3.2.49 \(\int x (a+b \arccos (c x))^2 \, dx\) [149]

3.2.49.1 Optimal result
3.2.49.2 Mathematica [A] (verified)
3.2.49.3 Rubi [A] (verified)
3.2.49.4 Maple [A] (verified)
3.2.49.5 Fricas [A] (verification not implemented)
3.2.49.6 Sympy [B] (verification not implemented)
3.2.49.7 Maxima [F]
3.2.49.8 Giac [A] (verification not implemented)
3.2.49.9 Mupad [F(-1)]

3.2.49.1 Optimal result

Integrand size = 12, antiderivative size = 76 \[ \int x (a+b \arccos (c x))^2 \, dx=-\frac {1}{4} b^2 x^2-\frac {b x \sqrt {1-c^2 x^2} (a+b \arccos (c x))}{2 c}-\frac {(a+b \arccos (c x))^2}{4 c^2}+\frac {1}{2} x^2 (a+b \arccos (c x))^2 \]

output
-1/4*b^2*x^2-1/4*(a+b*arccos(c*x))^2/c^2+1/2*x^2*(a+b*arccos(c*x))^2-1/2*b 
*x*(a+b*arccos(c*x))*(-c^2*x^2+1)^(1/2)/c
 
3.2.49.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.37 \[ \int x (a+b \arccos (c x))^2 \, dx=\frac {c x \left (2 a^2 c x-b^2 c x-2 a b \sqrt {1-c^2 x^2}\right )+2 b c x \left (2 a c x-b \sqrt {1-c^2 x^2}\right ) \arccos (c x)+b^2 \left (-1+2 c^2 x^2\right ) \arccos (c x)^2+2 a b \arcsin (c x)}{4 c^2} \]

input
Integrate[x*(a + b*ArcCos[c*x])^2,x]
 
output
(c*x*(2*a^2*c*x - b^2*c*x - 2*a*b*Sqrt[1 - c^2*x^2]) + 2*b*c*x*(2*a*c*x - 
b*Sqrt[1 - c^2*x^2])*ArcCos[c*x] + b^2*(-1 + 2*c^2*x^2)*ArcCos[c*x]^2 + 2* 
a*b*ArcSin[c*x])/(4*c^2)
 
3.2.49.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5139, 5211, 15, 5153}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x (a+b \arccos (c x))^2 \, dx\)

\(\Big \downarrow \) 5139

\(\displaystyle b c \int \frac {x^2 (a+b \arccos (c x))}{\sqrt {1-c^2 x^2}}dx+\frac {1}{2} x^2 (a+b \arccos (c x))^2\)

\(\Big \downarrow \) 5211

\(\displaystyle b c \left (\frac {\int \frac {a+b \arccos (c x)}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {b \int xdx}{2 c}-\frac {x \sqrt {1-c^2 x^2} (a+b \arccos (c x))}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^2\)

\(\Big \downarrow \) 15

\(\displaystyle b c \left (\frac {\int \frac {a+b \arccos (c x)}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} (a+b \arccos (c x))}{2 c^2}-\frac {b x^2}{4 c}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^2\)

\(\Big \downarrow \) 5153

\(\displaystyle b c \left (-\frac {(a+b \arccos (c x))^2}{4 b c^3}-\frac {x \sqrt {1-c^2 x^2} (a+b \arccos (c x))}{2 c^2}-\frac {b x^2}{4 c}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^2\)

input
Int[x*(a + b*ArcCos[c*x])^2,x]
 
output
(x^2*(a + b*ArcCos[c*x])^2)/2 + b*c*(-1/4*(b*x^2)/c - (x*Sqrt[1 - c^2*x^2] 
*(a + b*ArcCos[c*x]))/(2*c^2) - (a + b*ArcCos[c*x])^2/(4*b*c^3))
 

3.2.49.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 5139
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcCos[c*x])^n/(d*(m + 1))), x] + Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5153
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(-(b*c*(n + 1))^(-1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2] 
]*(a + b*ArcCos[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^ 
2*d + e, 0] && NeQ[n, -1]
 

rule 5211
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcCos[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] - S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
3.2.49.4 Maple [A] (verified)

Time = 0.72 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.54

method result size
parts \(\frac {a^{2} x^{2}}{2}+\frac {b^{2} \left (\frac {c^{2} x^{2} \arccos \left (c x \right )^{2}}{2}-\frac {\arccos \left (c x \right ) \left (c x \sqrt {-c^{2} x^{2}+1}+\arccos \left (c x \right )\right )}{2}+\frac {\arccos \left (c x \right )^{2}}{4}-\frac {c^{2} x^{2}}{4}+\frac {1}{4}\right )}{c^{2}}+\frac {2 a b \left (\frac {c^{2} x^{2} \arccos \left (c x \right )}{2}-\frac {c x \sqrt {-c^{2} x^{2}+1}}{4}+\frac {\arcsin \left (c x \right )}{4}\right )}{c^{2}}\) \(117\)
derivativedivides \(\frac {\frac {c^{2} x^{2} a^{2}}{2}+b^{2} \left (\frac {c^{2} x^{2} \arccos \left (c x \right )^{2}}{2}-\frac {\arccos \left (c x \right ) \left (c x \sqrt {-c^{2} x^{2}+1}+\arccos \left (c x \right )\right )}{2}+\frac {\arccos \left (c x \right )^{2}}{4}-\frac {c^{2} x^{2}}{4}+\frac {1}{4}\right )+2 a b \left (\frac {c^{2} x^{2} \arccos \left (c x \right )}{2}-\frac {c x \sqrt {-c^{2} x^{2}+1}}{4}+\frac {\arcsin \left (c x \right )}{4}\right )}{c^{2}}\) \(118\)
default \(\frac {\frac {c^{2} x^{2} a^{2}}{2}+b^{2} \left (\frac {c^{2} x^{2} \arccos \left (c x \right )^{2}}{2}-\frac {\arccos \left (c x \right ) \left (c x \sqrt {-c^{2} x^{2}+1}+\arccos \left (c x \right )\right )}{2}+\frac {\arccos \left (c x \right )^{2}}{4}-\frac {c^{2} x^{2}}{4}+\frac {1}{4}\right )+2 a b \left (\frac {c^{2} x^{2} \arccos \left (c x \right )}{2}-\frac {c x \sqrt {-c^{2} x^{2}+1}}{4}+\frac {\arcsin \left (c x \right )}{4}\right )}{c^{2}}\) \(118\)

input
int(x*(a+b*arccos(c*x))^2,x,method=_RETURNVERBOSE)
 
output
1/2*a^2*x^2+b^2/c^2*(1/2*c^2*x^2*arccos(c*x)^2-1/2*arccos(c*x)*(c*x*(-c^2* 
x^2+1)^(1/2)+arccos(c*x))+1/4*arccos(c*x)^2-1/4*c^2*x^2+1/4)+2*a*b/c^2*(1/ 
2*c^2*x^2*arccos(c*x)-1/4*c*x*(-c^2*x^2+1)^(1/2)+1/4*arcsin(c*x))
 
3.2.49.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.30 \[ \int x (a+b \arccos (c x))^2 \, dx=\frac {{\left (2 \, a^{2} - b^{2}\right )} c^{2} x^{2} + {\left (2 \, b^{2} c^{2} x^{2} - b^{2}\right )} \arccos \left (c x\right )^{2} + 2 \, {\left (2 \, a b c^{2} x^{2} - a b\right )} \arccos \left (c x\right ) - 2 \, {\left (b^{2} c x \arccos \left (c x\right ) + a b c x\right )} \sqrt {-c^{2} x^{2} + 1}}{4 \, c^{2}} \]

input
integrate(x*(a+b*arccos(c*x))^2,x, algorithm="fricas")
 
output
1/4*((2*a^2 - b^2)*c^2*x^2 + (2*b^2*c^2*x^2 - b^2)*arccos(c*x)^2 + 2*(2*a* 
b*c^2*x^2 - a*b)*arccos(c*x) - 2*(b^2*c*x*arccos(c*x) + a*b*c*x)*sqrt(-c^2 
*x^2 + 1))/c^2
 
3.2.49.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (65) = 130\).

Time = 0.28 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.72 \[ \int x (a+b \arccos (c x))^2 \, dx=\begin {cases} \frac {a^{2} x^{2}}{2} + a b x^{2} \operatorname {acos}{\left (c x \right )} - \frac {a b x \sqrt {- c^{2} x^{2} + 1}}{2 c} - \frac {a b \operatorname {acos}{\left (c x \right )}}{2 c^{2}} + \frac {b^{2} x^{2} \operatorname {acos}^{2}{\left (c x \right )}}{2} - \frac {b^{2} x^{2}}{4} - \frac {b^{2} x \sqrt {- c^{2} x^{2} + 1} \operatorname {acos}{\left (c x \right )}}{2 c} - \frac {b^{2} \operatorname {acos}^{2}{\left (c x \right )}}{4 c^{2}} & \text {for}\: c \neq 0 \\\frac {x^{2} \left (a + \frac {\pi b}{2}\right )^{2}}{2} & \text {otherwise} \end {cases} \]

input
integrate(x*(a+b*acos(c*x))**2,x)
 
output
Piecewise((a**2*x**2/2 + a*b*x**2*acos(c*x) - a*b*x*sqrt(-c**2*x**2 + 1)/( 
2*c) - a*b*acos(c*x)/(2*c**2) + b**2*x**2*acos(c*x)**2/2 - b**2*x**2/4 - b 
**2*x*sqrt(-c**2*x**2 + 1)*acos(c*x)/(2*c) - b**2*acos(c*x)**2/(4*c**2), N 
e(c, 0)), (x**2*(a + pi*b/2)**2/2, True))
 
3.2.49.7 Maxima [F]

\[ \int x (a+b \arccos (c x))^2 \, dx=\int { {\left (b \arccos \left (c x\right ) + a\right )}^{2} x \,d x } \]

input
integrate(x*(a+b*arccos(c*x))^2,x, algorithm="maxima")
 
output
1/2*a^2*x^2 + 1/2*(2*x^2*arccos(c*x) - c*(sqrt(-c^2*x^2 + 1)*x/c^2 - arcsi 
n(c*x)/c^3))*a*b + 1/2*(x^2*arctan2(sqrt(c*x + 1)*sqrt(-c*x + 1), c*x)^2 - 
 2*c*integrate(sqrt(c*x + 1)*sqrt(-c*x + 1)*x^2*arctan2(sqrt(c*x + 1)*sqrt 
(-c*x + 1), c*x)/(c^2*x^2 - 1), x))*b^2
 
3.2.49.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.57 \[ \int x (a+b \arccos (c x))^2 \, dx=\frac {1}{2} \, b^{2} x^{2} \arccos \left (c x\right )^{2} + a b x^{2} \arccos \left (c x\right ) + \frac {1}{2} \, a^{2} x^{2} - \frac {1}{4} \, b^{2} x^{2} - \frac {\sqrt {-c^{2} x^{2} + 1} b^{2} x \arccos \left (c x\right )}{2 \, c} - \frac {\sqrt {-c^{2} x^{2} + 1} a b x}{2 \, c} - \frac {b^{2} \arccos \left (c x\right )^{2}}{4 \, c^{2}} - \frac {a b \arccos \left (c x\right )}{2 \, c^{2}} + \frac {b^{2}}{8 \, c^{2}} \]

input
integrate(x*(a+b*arccos(c*x))^2,x, algorithm="giac")
 
output
1/2*b^2*x^2*arccos(c*x)^2 + a*b*x^2*arccos(c*x) + 1/2*a^2*x^2 - 1/4*b^2*x^ 
2 - 1/2*sqrt(-c^2*x^2 + 1)*b^2*x*arccos(c*x)/c - 1/2*sqrt(-c^2*x^2 + 1)*a* 
b*x/c - 1/4*b^2*arccos(c*x)^2/c^2 - 1/2*a*b*arccos(c*x)/c^2 + 1/8*b^2/c^2
 
3.2.49.9 Mupad [F(-1)]

Timed out. \[ \int x (a+b \arccos (c x))^2 \, dx=\int x\,{\left (a+b\,\mathrm {acos}\left (c\,x\right )\right )}^2 \,d x \]

input
int(x*(a + b*acos(c*x))^2,x)
 
output
int(x*(a + b*acos(c*x))^2, x)